

The NIST IAD

Data Science

Evaluation(DSE)

Craig Greenberg

March 17-18, 2016

Importance of Measurement

Evaluation Driven Research

Efficiency of Evaluation

Well designed challenge problems, datasets, and metrics **facilitate research progress**

- Reduces spin-up time and general overhead
- Provides a common framework for sharing and understanding approaches and results
- Fosters collaboration

To be effective, evaluation must be

- Goal driven
- Systematic
- Rigorous

How Evaluation Drives Progress

Evaluation for ASR at NIST-IAD

Data Science Evaluation Goals

Apply measurement methods for data science systems Measure the state-of-the-art and drive progress

Research measurement methods for data science

- General measurement/evaluation methods
- Effective use of "found" data
- Large datasets
- Workflows (component and end-to-end performance)
- Human involvement
- System benchmarking
- Mixed measurements (e.g., accuracy as a function of runtime)

Data Science Evaluation Hurdles

Goal	Hurdle
Found data	Data licensing / rights, privacy
Workflows	Structure of communities
Large datasets	Logistical, cost
System benchmarking	Is difficult, requires hardware
Human involvement	Requires labor & IRB, varied

Data Science Evaluation Plan

DARPA XDATA

Identify Hurdles

Pre-pilot Evaluation

Overcome Hurdles on Small Scale

Pilot Evaluation

Overcome Hurdles on Large(r) Scale

Annual Evaluation Series with Multiple Tracks

Join Measurement and Core Technology Research

Local Private Cloud

Address benchmarking and technical challenges of running systems at NIST

Data Science Evaluation Schedule

 $2014 \Longrightarrow 2015 \Longrightarrow 2016 \Longrightarrow 2017$

XDATA

Closed

Pre-Pilot

Pilot

Full-Scale Evaluation

Single-Track

Invitation-Only

Domain: Traffic

Single-Track

Cloud

NIST

Open to Everyone

Domain: Traffic

Multiple Tracks

Open to Everyone

Domain: Multiple

Domain: Multiple

Evaluation Management System

Set up as a Private IaaS (aka Cloud infrastructure services): IT environment with an ability for a subscriber to provision infrastructure on demand (ex: Amazon Web Service, Google Compute Engine, Microsoft Azure)

Hardware:

- 496x CPU (Cores)
- 467.8TB HDD
- 2.1TB RAM
- 2x Tesla K8o
- 4x Intel Phi 5100

Subscriber

ubuntu.®

OpenStack Dashboard

kubernetes

and more

..

Community App Catalog

Your Applications

OpenStack Shared Services

Standard Hardware

TMP SLIDE: outline Importance of measurement / what's EDR (2 min)

- Indeed, look at successes: ASR, TREC, SRE (1 min)
- We plan to do similar for DS (10-15 min)
 - Specific goals: general measurement/eval methods, workflows, large datasets, system benchmarking, human involvement
 - Challenges: logistical (size of data, structure of communities), data rights, privacy, eval design/implementation (also size of data, domain knowledge, benchmarking requires hardware and is hard)
 - Plan/Schedule: feet wet in XDATA; EMS; pre-pilot, pilot, eval
- Transition to next talk (1 min)